3.1.15 \(\int \frac {1}{\sec ^{\frac {5}{2}}(a+b x)} \, dx\) [15]

Optimal. Leaf size=62 \[ \frac {6 \sqrt {\cos (a+b x)} E\left (\left .\frac {1}{2} (a+b x)\right |2\right ) \sqrt {\sec (a+b x)}}{5 b}+\frac {2 \sin (a+b x)}{5 b \sec ^{\frac {3}{2}}(a+b x)} \]

[Out]

2/5*sin(b*x+a)/b/sec(b*x+a)^(3/2)+6/5*(cos(1/2*a+1/2*b*x)^2)^(1/2)/cos(1/2*a+1/2*b*x)*EllipticE(sin(1/2*a+1/2*
b*x),2^(1/2))*cos(b*x+a)^(1/2)*sec(b*x+a)^(1/2)/b

________________________________________________________________________________________

Rubi [A]
time = 0.02, antiderivative size = 62, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {3854, 3856, 2719} \begin {gather*} \frac {2 \sin (a+b x)}{5 b \sec ^{\frac {3}{2}}(a+b x)}+\frac {6 \sqrt {\cos (a+b x)} \sqrt {\sec (a+b x)} E\left (\left .\frac {1}{2} (a+b x)\right |2\right )}{5 b} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sec[a + b*x]^(-5/2),x]

[Out]

(6*Sqrt[Cos[a + b*x]]*EllipticE[(a + b*x)/2, 2]*Sqrt[Sec[a + b*x]])/(5*b) + (2*Sin[a + b*x])/(5*b*Sec[a + b*x]
^(3/2))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 3854

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Csc[c + d*x])^(n + 1)/(b*d*n)), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rubi steps

\begin {align*} \int \frac {1}{\sec ^{\frac {5}{2}}(a+b x)} \, dx &=\frac {2 \sin (a+b x)}{5 b \sec ^{\frac {3}{2}}(a+b x)}+\frac {3}{5} \int \frac {1}{\sqrt {\sec (a+b x)}} \, dx\\ &=\frac {2 \sin (a+b x)}{5 b \sec ^{\frac {3}{2}}(a+b x)}+\frac {1}{5} \left (3 \sqrt {\cos (a+b x)} \sqrt {\sec (a+b x)}\right ) \int \sqrt {\cos (a+b x)} \, dx\\ &=\frac {6 \sqrt {\cos (a+b x)} E\left (\left .\frac {1}{2} (a+b x)\right |2\right ) \sqrt {\sec (a+b x)}}{5 b}+\frac {2 \sin (a+b x)}{5 b \sec ^{\frac {3}{2}}(a+b x)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.07, size = 55, normalized size = 0.89 \begin {gather*} \frac {\sqrt {\sec (a+b x)} \left (12 \sqrt {\cos (a+b x)} E\left (\left .\frac {1}{2} (a+b x)\right |2\right )+\sin (a+b x)+\sin (3 (a+b x))\right )}{10 b} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sec[a + b*x]^(-5/2),x]

[Out]

(Sqrt[Sec[a + b*x]]*(12*Sqrt[Cos[a + b*x]]*EllipticE[(a + b*x)/2, 2] + Sin[a + b*x] + Sin[3*(a + b*x)]))/(10*b
)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(201\) vs. \(2(78)=156\).
time = 2.11, size = 202, normalized size = 3.26

method result size
default \(-\frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {b x}{2}+\frac {a}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {b x}{2}+\frac {a}{2}\right )\right )}\, \left (-8 \left (\sin ^{6}\left (\frac {b x}{2}+\frac {a}{2}\right )\right ) \cos \left (\frac {b x}{2}+\frac {a}{2}\right )+8 \left (\sin ^{4}\left (\frac {b x}{2}+\frac {a}{2}\right )\right ) \cos \left (\frac {b x}{2}+\frac {a}{2}\right )-2 \left (\sin ^{2}\left (\frac {b x}{2}+\frac {a}{2}\right )\right ) \cos \left (\frac {b x}{2}+\frac {a}{2}\right )-3 \EllipticE \left (\cos \left (\frac {b x}{2}+\frac {a}{2}\right ), \sqrt {2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {b x}{2}+\frac {a}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (b x +a \right )}{2}}\right )}{5 \sqrt {-2 \left (\sin ^{4}\left (\frac {b x}{2}+\frac {a}{2}\right )\right )+\sin ^{2}\left (\frac {b x}{2}+\frac {a}{2}\right )}\, \sin \left (\frac {b x}{2}+\frac {a}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {b x}{2}+\frac {a}{2}\right )\right )-1}\, b}\) \(202\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/sec(b*x+a)^(5/2),x,method=_RETURNVERBOSE)

[Out]

-2/5*((2*cos(1/2*b*x+1/2*a)^2-1)*sin(1/2*b*x+1/2*a)^2)^(1/2)*(-8*sin(1/2*b*x+1/2*a)^6*cos(1/2*b*x+1/2*a)+8*sin
(1/2*b*x+1/2*a)^4*cos(1/2*b*x+1/2*a)-2*sin(1/2*b*x+1/2*a)^2*cos(1/2*b*x+1/2*a)-3*EllipticE(cos(1/2*b*x+1/2*a),
2^(1/2))*(2*sin(1/2*b*x+1/2*a)^2-1)^(1/2)*(sin(1/2*b*x+1/2*a)^2)^(1/2))/(-2*sin(1/2*b*x+1/2*a)^4+sin(1/2*b*x+1
/2*a)^2)^(1/2)/sin(1/2*b*x+1/2*a)/(2*cos(1/2*b*x+1/2*a)^2-1)^(1/2)/b

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sec(b*x+a)^(5/2),x, algorithm="maxima")

[Out]

integrate(sec(b*x + a)^(-5/2), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.87, size = 74, normalized size = 1.19 \begin {gather*} \frac {2 \, \cos \left (b x + a\right )^{\frac {3}{2}} \sin \left (b x + a\right ) + 3 i \, \sqrt {2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (b x + a\right ) + i \, \sin \left (b x + a\right )\right )\right ) - 3 i \, \sqrt {2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (b x + a\right ) - i \, \sin \left (b x + a\right )\right )\right )}{5 \, b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sec(b*x+a)^(5/2),x, algorithm="fricas")

[Out]

1/5*(2*cos(b*x + a)^(3/2)*sin(b*x + a) + 3*I*sqrt(2)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(b*x
 + a) + I*sin(b*x + a))) - 3*I*sqrt(2)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(b*x + a) - I*sin(
b*x + a))))/b

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sec ^{\frac {5}{2}}{\left (a + b x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sec(b*x+a)**(5/2),x)

[Out]

Integral(sec(a + b*x)**(-5/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sec(b*x+a)^(5/2),x, algorithm="giac")

[Out]

integrate(sec(b*x + a)^(-5/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} \int \frac {1}{{\left (\frac {1}{\cos \left (a+b\,x\right )}\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(1/cos(a + b*x))^(5/2),x)

[Out]

int(1/(1/cos(a + b*x))^(5/2), x)

________________________________________________________________________________________